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F-16

Abstract

When one studies the history of aircraft desigre timds several attempts to design and
build an aircraft with reduced tail size. Althoutitis reduction has sometimes resulted in
smaller drag and weight, most of these ‘“taillesgtraft had severe controllability
problems, since the lateral-handling qualities wéakly poor. Regardless of these
attempts, the interest in the development of direséth reduced tail size —compared
with conventional aircraft — has recently increasEais interest is based on the intention
of designing future aircraft by using more steakbhnology in order to minimize their
radar signature. One step to doing this is theatsalu of the vertical tail which generates
a large signature. The removal of parts of theiceadrtail results in a lateral-directional
behavior of the aircraft, which is far differentaththat of a conventional one. In order to
get a new control on the lateral axis, a thrustarecontrol was added to the aircraft. It is
obvious that without a reasonable controller ttalléss” aircraft cannot be handled by a
pilot.

In this study, the method of the eigenstructurdgasgent will primarily be used to
determine a controller for the “tailless” F-16. kfgithis method it is possible to design a
simple closed-loop controller with a gain matrixtie feed-back loop. The eigenstructure
assignment requires a desired system whose eigens# is taken to compute the gain
matrix of the closed-loop system. A desired modilil ve developed which allows the
placing of three of the four characteristic lateration eigenvalues of an aircraft — roll
subsidence and two conjugate complex Dutch rolepet on exact locations in the
complex plane. At two different flight conditiorthiese parameters are varied to determine
a controller which yields a advantageous behavidhe aircraft for a simulated roll rate
and side slip. Following this, the desired moddllva extended by actuator dynamics and



saturation. It will turn out that the parameterseh@o be chosen in a different way to
prevent the system from becoming unstable. Thelaiioo of the system will also reveal
that there are some restrictions for the use ofdéeeloped controller. These refer
primarily on limitations on the step size of thereoanded impulse.

By using the results and the knowledge of the presty considered flight conditions —
these include a low velocity and a high velocitye@iing point — a gain scheduling for
intermediate velocities will be developed. Thisestiling will be evaluated by simulating
the response for the determined gain matrix foessdwelocities.

At the end of this study an LQ controller will besigned in order to see if this kind of
controller is capable of yielding comparable resuti the eigenstructure assignment. It
will be observed that the closed-loop system redpam a different way to stabilize the
aircraft after a commanded impulse. Furthermorayilitindicate that it is a problem to
command a side slip and a roll rate as directfpathe previous system. One may attempt
to improve this by introducing an asymptotic modellowing — without a basic
improvement of the problem, as can already berider
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Table Of Variables And Acronyms

This table is meant to give an overview of the nimgiortant variables and acronyms used
in the report. For multiply used variables and agros either description is specified. The
respective meaning then results from the contewhich the denotation is used.

Variables

system matrix
control matrix
output matrix
direct feed-through matrix
universal constant of gravitation
altitude
transformation matrix — Hamilton matrix
imaginary operator
identity matrix
gain matrix
a Mach number
roll rate
power — weighting matrix for the eigenstructursigsment
yaw rate
Laplace variable
control vector
eigenvector
velocity — modal transformation matrix
state vector
output vector

< XLK<CcWwWTPYT X TISQUOW>

angle of attack

side slip angle

actuator deflection

actuator deflection

roll angle

flight path angle

throttle setting

eigenvalue

Lagrange multiplier

pitch angle

real part of a complex value
break-off frequency
frequency — imaginary part of a complex value
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P
¢

yaw angle
damping

Subscripts - Indices

a
act
aero
ail
cg

cl
cmd
d

dr
elv
eng
ext
ini
max
out
sprl

tv

1,2, ..

achievable/attainable
actuator
aerodynamic
aileron

center of gravity
closed-loop
commanded
desired

Dutch roll
elevator

engine
extended

initial

maximum
output

spiral

true

thrust vector

trim point
numeration

Superscripts

T

*

transposed

conjugate complex transposed



